Commutative Algebra II 5 Koszul complex, regular sequences

2022-2023
Notes by Alexandros Groutides partly based on lectures by Miles Reid at the University of Warwick

5 Koszul complex and regular local rings

We start with two alternative definitions of the Koszul complex. Recall that a chain complex of R-modules $M_{\bullet}, d_{\bullet}^{M}$ is a sequence of R-modules M_{i} and homomorphisms

$$
\cdots \rightarrow M_{m+1} \xrightarrow{d_{m+1}^{M}} M_{m} \xrightarrow{d_{m}^{M}} M_{m-1} \rightarrow \ldots
$$

such that the composite of any two consecutive maps is zero. Given two chain complexes of R-modules $M_{\bullet}, d_{\bullet}^{M}$ and $N_{\bullet}, d_{\bullet}^{N}$, we can form the double complex $M_{\bullet} \otimes_{A} N_{\bullet}$

where the horizonal differentials are given by $\delta^{h}:=d_{m}^{M} \otimes 1: M_{m} \otimes_{A} N_{n} \rightarrow M_{m-1} \otimes_{A} N_{n}$ and the vertical differentials are given by $\delta^{v}:=(-1)^{m} 1 \otimes d_{n}^{N}: M_{m} \otimes_{A} N_{n} \rightarrow M_{m} \otimes_{A} N_{n-1}$. Because of this we see that each square in the double complex, anti-commutes. This is done on purpose since it allows to define a chain complex from this double complex as follows. We define the total complex $\operatorname{Tot}^{\oplus}\left(M_{\mathbf{\bullet}} \otimes_{A} N_{\mathbf{\bullet}}\right)$ of the above tensor double complex to have degree $d \geq 0$ part

$$
\operatorname{Tot}^{\oplus}\left(M_{\bullet} \otimes_{A} N_{\bullet}\right)_{d}=\bigoplus_{m+n=d} M_{m} \otimes_{A} N_{n}
$$

and differential $\delta:=\delta^{h}+\delta^{v}$. The fact that the squares in the double complex anti-commute means that $\delta^{2}=0$ and so this is indeed a complex. Visually this is just taking diagonal slices in our double complex along lines of slope -1 and the differentials map one diagonal slice to the previous one in the only way possible, that is, in each summand you go down and to the left. Here a useful remark is that the total complex is commutative in the sense that $\operatorname{Tot}^{\oplus}\left(M_{\bullet} \otimes_{A} N_{\mathbf{\bullet}}\right)$ and $\operatorname{Tot}^{\oplus}\left(N_{\bullet} \otimes_{A} M_{\bullet}\right)$ are isomorphic as chain complexes. It is also associative in the sense that $\operatorname{Tot}^{\oplus}\left(\operatorname{Tot}^{\oplus}\left(M_{\bullet} \otimes_{A} N_{\bullet}\right) \otimes_{A} P_{\bullet}\right)$ and $\operatorname{Tot}^{\oplus}\left(M_{\mathbf{\bullet}} \otimes_{A} \operatorname{Tot}^{\oplus}\left(N_{\mathbf{\bullet}} \otimes_{A} P_{\mathbf{\bullet}}\right)\right)$ are isomorphic as chain complexes.

Definition 5.1 (Koszul complex 1). Let A be a ring and $x \in A$. We define the Koszul complex $K(x)$ to be the complex

$$
0 \rightarrow A \xrightarrow{x} A \rightarrow 0
$$

given by multiplication by x. Now for $x_{1}, \ldots, x_{n} \in A$, we define the Koszul complex $K\left(x_{1}, \ldots, x_{n}\right)$ inductively by $K\left(x_{1}, x_{2}\right):=\operatorname{Tot}^{\oplus}\left(K\left(x_{1}\right) \otimes_{A} K\left(x_{2}\right)\right)$, and
$K\left(x_{1}, \ldots, x_{n}\right):=\operatorname{Tot}^{\oplus}\left(K\left(x_{1}, \ldots, x_{n-1}\right) \otimes_{A} K\left(x_{n}\right)\right)$.
This definition will be extremely useful when proving stuff about Koszul homology that we define later.

Definition 5.2 (Koszul complex 2). Given $x_{1}, \ldots, x_{n} \in A$, we define the Koszul complex

$$
\cdots \rightarrow K_{n} \rightarrow K_{n-1} \rightarrow \cdots \rightarrow K_{1} \rightarrow K_{0} \rightarrow 0
$$

where $K_{0}:=A$ and for $p \geq 1$ we have $K_{p}:=\bigwedge^{p}\left(\bigoplus_{i=1}^{n} A e_{i}\right)$, the p th exterior algebra of the free A-module of rank n, which is the free A-module of rank $\binom{n}{p}$ with basis $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{p}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq n\right\}$

We leave the equivalence of the two definitions as an exercise.

Definition 5.3 (Koszul homology). Let M be an A-module and $x_{1}, \ldots, x_{n} \in A$. The Koszul homology with coefficients in M is defined by

$$
H_{p}\left(x_{1}, \ldots, x_{n}, M\right):=H_{p}\left(M \otimes_{A} K\left(x_{1}, \ldots, x_{n}\right)\right)
$$

For a chain complex C. of A-modules, we define the Koszul homology with coefficients in C. to be

$$
H_{p}\left(x_{1}, \ldots, x_{n}, C_{\bullet}\right):=H_{p}\left(\operatorname{Tot}^{\oplus}\left(C_{\bullet} \otimes_{A} K\left(x_{1}, \ldots, x_{n}\right)\right)\right)
$$

Remark. An easy check shows that we always have

$$
\begin{gathered}
H_{0}\left(x_{1}, \ldots, x_{n}, M\right)=M /\left(x_{1}, \ldots, x_{n}\right) M \\
H_{n}\left(x_{1}, \ldots, x_{n}, M\right)=\left\{\xi \in M \mid x_{1} \xi=\cdots=x_{n} \xi=0\right\}
\end{gathered}
$$

Theorem 5.1 (Künneth formula for Koszul homology). Let C_{\bullet}, d_{\bullet} be a chain complex of A-modules and $x \in A$. Then we have a short exact sequence

$$
0 \rightarrow H_{0}\left(x, H_{q}\left(C_{\bullet}\right)\right) \rightarrow H_{q}\left(x, C_{\bullet}\right) \rightarrow H_{1}\left(x, H_{q-1}\left(C_{\bullet}\right)\right) \rightarrow 0
$$

Proof. A calculation involving double complexes shows that the total complex $\operatorname{Tot}^{\oplus}\left(C . \otimes_{A} K(x)\right)$ is just

$$
\operatorname{Tot}^{\oplus}\left(C \cdot \otimes_{A} K(x)\right)_{q+1}=C_{q+1} \oplus C_{q}
$$

with differential

$$
\Delta_{q+1}:=\left(\begin{array}{cc}
d_{q+1} & (-1)^{q} x \\
0 & d_{q}
\end{array}\right)
$$

We end up with the short exact sequence of chain complexes

$$
0 \rightarrow C . \rightarrow \operatorname{Tot}^{\oplus}\left(C . \otimes_{A} K(x)\right) \rightarrow C \cdot[-1] \rightarrow 0
$$

where $C_{.}[-1]$ denotes the complex $C_{\text {. }}$ shifted in degree by -1 and same differential (that is, $C_{q}[-1]=$ $\left.C_{q-1}\right)$. This short exact sequence is given explicitly by

One checks that the squares commute and hence this is indeed a short exact sequence of chain complexes. Now taking homology gives us a long exact sequence

$$
\ldots \longrightarrow H_{q+1}\left(C_{\bullet}[-1]\right) \xrightarrow{\delta_{q}} H_{q}\left(C_{\bullet}\right) \longrightarrow H_{q}\left(x, C_{\bullet}\right) \longrightarrow H_{q}\left(C_{\bullet}[-1]\right) \xrightarrow{\delta_{q-1}} H_{q-1}\left(C_{\bullet}\right) \longrightarrow \ldots
$$

which simplifies to

$$
\ldots \longrightarrow H_{q}\left(C_{\bullet}\right) \xrightarrow{\delta_{q}} H_{q}\left(C_{\bullet}\right) \longrightarrow H_{q}\left(x, C_{\bullet}\right) \longrightarrow H_{q-1}\left(C_{\bullet}\right) \xrightarrow{\delta_{q-1}} H_{q-1}\left(C_{\bullet}\right) \longrightarrow \ldots
$$

We now claim that the connecting homomorphisms δ_{q} are just multiplication by $(-1)^{q} x$. To see this we trace the steps of the snake lemma. Let $c \in C_{n+1}[-1]=C_{n}$ be a cycle (that is, $\left.d_{n}(c)=0\right)$. Then c is the image of $\left(c^{\prime}, c\right) \in C_{n+1} \oplus C_{n}$ for some $c^{\prime} \in C_{n+1}$. Applying Δ_{n+1} to ($\left.c^{\prime}, c\right)$ we get

$$
\left(d_{n+1}\left(c^{\prime}\right)+(-1)^{n} x c, d_{n}(c)\right)=\left(d_{n+1}\left(c^{\prime}\right)+(-1)^{n} x c, 0\right) \in C_{n} \oplus C_{n-1}
$$

since c is a cycle. Then by construction of the connecting homomorphism on homology, we have that $\delta_{q}([c])=\left[d_{q+1}\left(c^{\prime}\right)+(-1)^{q} x c\right]=(-1)^{q} x[c]$, since $\left[d_{n+1}\left(c^{\prime}\right)\right]=0$ as $d_{n+1}\left(c^{\prime}\right)$ is a boundary. This proves our claim. Hence from the long exact sequence above, we get a short exact sequence

$$
0 \longrightarrow \frac{H_{q}\left(C_{\mathbf{\bullet}}\right)}{x H_{q}\left(C_{\bullet}\right)} \longrightarrow H_{q}\left(x, C_{\bullet}\right) \longrightarrow\left\{[c] \in H_{q-1}\left(C_{\bullet}\right)| | x[c]=0\right\} \longrightarrow 0
$$

But this is just the short exact sequence in question, by the remark before the theorem.
Corollary 5.2. Let $x \in A$ and C. a chain complex of A-modules. Then the Koszul homology $H_{q}(x, C$. is annihilated by x.

Proof. The leftmost map in the above short exact sequence is given explicitly by

$$
\iota^{*}: \frac{H_{q}\left(C_{\mathbf{\bullet}}\right)}{x H_{q}\left(C_{\mathbf{\bullet}}\right)} \longrightarrow H_{q}\left(x, C_{\mathbf{\bullet}}\right), \quad\left[c_{q}\right]+x H_{q}\left(C_{\mathbf{\bullet}}\right) \mapsto\left[\left(c_{q}, 0\right)\right]
$$

where c_{q} is a cycle. Let $\left[\left(c_{q}, c_{q-1}\right)\right] \in H_{q}\left(x, C_{.}\right)$for some cycle $\left(c_{q}, c_{q-1}\right) \in C_{q} \oplus C_{q-1}$. This gives

$$
(0,0)=\Delta\left(c_{q}, c_{q-1}\right)=\left(d_{q}\left(c_{q}\right)+(-1)^{q-1} x c_{q-1}, d_{q-1}\left(c_{q-1}\right)\right)
$$

It follows that $\left.\left[\left(c_{q}, c_{q-1}\right)\right]=\left[\left(c_{q}, 0\right)\right]+\left[0, c_{q-1}\right)\right]=\iota^{*}\left(\left[c_{q}\right]+x H_{q}\left(C_{\mathbf{\bullet}}\right)\right)+\left[\left(0, c_{q-1}\right)\right]$. Hence

$$
x\left[\left(c_{q}, c_{q-1}\right)\right]=\iota^{*}\left(x\left[c_{q}\right]+x H_{q}\left(C_{\bullet}\right)\right)+\left[\left(0, x c_{q-1}\right)\right]=0+(-1)^{q-1}\left[\left(0, d_{q}\left(c_{q}\right)\right) .\right.
$$

But now $\Delta_{q+1}\left(0, c_{q}\right)=\left((-1)^{q} x c_{q}, d_{q}\left(c_{q}\right)\right)$ and so $x\left[\left(c_{q}, c_{q-1}\right)\right]=(-1)^{q-1}\left[\Delta_{q+1}\left(0, c_{q}\right)\right]-\left[\left(x c_{q}, 0\right)\right]$. The first term is zero since $\Delta_{q+1}\left(0, c_{q}\right)$ is a boundary, and we have already showed that the second term is zero.

Corollary 5.3. Let $x_{1}, \ldots, x_{n} \in A$ and let C. be a chain complex of A-modules. Then the ideal $\left(x_{1}, \ldots, x_{n}\right)$ of A annihilates the Koszul homology $H_{q}\left(x_{1}, \ldots, x_{n}, C_{.}\right)$.

Proof. This follows from Corollary 5.2 together with the commutativity and associativity of the total complex associated to a tensor double complex.

Definition 5.4 (Regular sequence). Let M be an A-module. A sequence $x_{1}, \ldots, x_{n} \in A$ is M-regular if
(1) $M /\left(x_{1}, \ldots, x_{n}\right) M \neq 0$;
(2) x_{1} is a nonzero divisor of M; and
(3) x_{i} is a nonzero divisor of $M /\left(x_{1}, \ldots, x_{i-1}\right) M$ for $2 \leq i \leq n$.

Theorem 5.4. (1) Let M be an A-module and x_{1}, \ldots, x_{n} an M-regular sequence. Then the Koszul cohomology vanishes: $H_{p}\left(x_{1}, \ldots, x_{n}, M\right)=0$ for all $p>0$.
(2) If A, \mathfrak{m} is a Noetherian local ring, M a finite A-module, $x_{1}, \ldots, x_{n} \in \mathfrak{m}$ and $H_{1}\left(x_{1}, \ldots, x_{n}, M\right)=0$, then x_{1}, \ldots, x_{n} is an M-regular sequence.

Proof. (1) By induction on $n \geq 1$. If $n=1, H_{p}\left(x_{1}, M\right)$ is the homology of the complex

$$
0 \rightarrow M \xrightarrow{x_{1}} M \rightarrow 0
$$

and hence $H_{p}\left(x_{1}, M\right)=0$ for $p \geq 2$ and $H_{p}\left(x_{1}, M\right)=\operatorname{ker}\left(x_{1}\right)=0$ since x_{1} is M-regular by assumption. Now let $n>1$. Let C. be the complex $M \otimes_{A} K\left(x_{1}, \ldots, x_{n-1}\right)$. Then $H_{p}\left(x_{1}, \ldots, x_{n}, M\right)=H_{p}\left(x_{n}, C_{\text {。 }}\right)$. Hence by Theorem 5.1 we have a short exact sequence

$$
0 \rightarrow H_{0}\left(x_{n}, H_{p}\left(C_{\bullet}\right)\right) \rightarrow H_{p}\left(x_{1}, \ldots, x_{n}, M\right) \rightarrow H_{1}\left(x_{n}, H_{p-1}\left(C_{\bullet}\right)\right) \rightarrow 0
$$

By definition, $H_{p}\left(C_{\bullet}\right)=H_{p}\left(x_{1}, \ldots x_{n-1}, M\right)$ which is zero for $p>0$ by induction. Thus from the short exact sequence we see that $H_{p}\left(x_{1}, \ldots, x_{n}, M\right)=0$ for $p>1$ since the terms on the left and on the right vanish. Now for $p=1$, the left most term still vanishes, hence we have

$$
H_{p}\left(x_{1}, \ldots, x_{n}, M\right) \simeq H_{1}\left(x_{n}, H_{0}\left(x_{n}, \ldots, x_{n-1}, M\right)\right)
$$

The latter is equal to the 1st homology of the complex

$$
0 \rightarrow M /\left(x_{1}, \ldots, x_{n-1}\right) M \xrightarrow{x_{n}} M /\left(x_{1}, \ldots, x_{n-1}\right) M \rightarrow 0
$$

which is zero, since x_{n} is $M /\left(x_{1}, \ldots, x_{n-1}\right) M$-regular.
(2) We again proceed by induction on $n \geq 1$. The result is trivial for $n=1$. Let $n>1$ and again let C. be the complex $M \otimes_{A} K\left(x_{1}, \ldots, x_{n-1}\right)$. By the proof of Theorem 5.1, we have an exact sequence

$$
H_{1}\left(C_{\bullet}\right) \xrightarrow{-x_{n}} H_{1}\left(C_{\bullet}\right) \rightarrow H_{1}\left(x_{n}, C_{\bullet}\right)=H_{1}\left(x_{1}, \ldots, x_{n}, M\right)=0
$$

Hence we have that $H_{1}\left(C_{\mathbf{\bullet}}\right)=x_{n} H_{1}\left(C_{\bullet}\right)$. Now since A is Noetherian and M is finite, $H_{1}\left(C_{\mathbf{\bullet}}\right)=$ $H_{1}\left(x_{1}, \ldots, x_{n-1}, M\right)$ is a finite A-module. Since $x_{n} \in \mathfrak{m}$, we get $H_{1}\left(x_{1}, \ldots, x_{n-1}, M\right)=0$ from Nakayama's Lemma. Thus by induction, x_{1}, \ldots, x_{n-1} is an M-regular sequence. Now using Theorem 5.1 again, we have a short exact sequence

$$
0 \rightarrow H_{0}\left(x_{n}, H_{1}\left(C_{\bullet}\right)\right) \rightarrow H_{1}\left(x_{1}, \ldots, x_{n}, M\right) \rightarrow H_{1}\left(x_{n}, H_{0}\left(C_{\bullet}\right)\right) \rightarrow 0
$$

where the two leftmost terms are zero. Thus $H_{1}\left(x_{n}, H_{0}\left(C_{\mathbf{\bullet}}\right)\right)=H_{1}\left(x_{n}, M /\left(x_{1}, \ldots, x_{n-1}\right) M\right)=0$, which implies x_{n} is $M /\left(x_{1}, \ldots, x_{n-1}\right) M$-regular and thus $\left(x_{1}, \ldots, x_{n}\right)$ is an M-regular sequence.

Corollary 5.5. If $x_{1}, \ldots, x_{n} \in A$ is a regular sequence, the Koszul complex $K\left(x_{1}, \ldots, x_{n}\right)$ is a finite free resolution of $A /\left(x_{1}, \ldots, x_{n}\right)$.

Proof. This follows from Theorem 5.4, Part 1 and the fact that $H_{0}\left(x_{1}, \ldots, x_{n}, A\right)=A /\left(x_{1}, \ldots, x_{n}\right)$

5.1 Hilbert's syzygy theorem

Let $A=k\left[x_{1}, \ldots, x_{s}\right]$ be the usual graded polynomial ring and M a finite graded A module. Assume M is generated by homogeneous generators $m_{1}, \ldots, m_{r_{0}}$ of degree $d_{i, 0}$. For a nonnegative integer d, we put $A(d)$ for the A-module A but with shifted grading by $-d$. This means that $A(-d)$ is the graded module with j th graded piece $A(-d)_{j}=A_{j-d}$. (Thus the generator $1 \in A$ has degree d in $A(-d)$). We have a surjective homomorphism of degree 0

$$
d_{0}: \bigoplus_{i=1}^{r_{0}} A\left(-d_{i, 0}\right) \longrightarrow M \quad \text { given by } 1_{i} \mapsto m_{i}
$$

where $e_{i}:=(0, \ldots, 1, \ldots, 0)$ with 1 in the i th place. On the left, the grading is $\bigoplus_{i=1}^{r_{0}} A\left(-d_{i, 0}\right)=$ $\bigoplus_{j \geq 0}\left(\bigoplus_{i=1}^{r_{0}} A\left(-d_{i, 0}\right)_{j}\right)$, so that 1_{i} has degree $d_{i, 0}$. This makes d_{0} a homomorphism of graded A-modules. The kernel $K:=\operatorname{ker}\left(d_{0}\right)$ is a homogeneous submodule, and since A is Noetherian, it is generated by finitely many homogeneous elements. Replace M with K and repeat the above process. Iterating this, we get a graded free resolution of M

$$
\cdots \rightarrow \bigoplus_{i=1}^{r_{n}} A\left(-d_{i, n}\right) \xrightarrow{d_{n}} \bigoplus_{i=1}^{r_{n-1}} A\left(-d_{i, n-1}\right) \rightarrow \cdots \rightarrow \bigoplus_{i=1}^{r_{0}} A\left(-d_{i, 0}\right) \xrightarrow{d_{0}} M \rightarrow 0
$$

If we pick a minimal set of generators at each step, the resolution we end up with is called a minimal graded free resolution of M. In this case, I claim that $\operatorname{im}\left(d_{n}\right) \subset\left(x_{1}, \ldots, x_{s}\right) \bigoplus_{i=1}^{r_{n-1}} A\left(-d_{i, n-1}\right)$ for all $n \geq 1$. To see this, suppose not. Since $\operatorname{im}\left(d_{n}\right)=\operatorname{ker}\left(d_{n-1}\right)$ is a homogeneous ideal, we can find a
homogeneous element $\left(f_{1}, \ldots, f_{r_{n-1}}\right) \in \operatorname{im}\left(d_{n}\right)$ that is not in $\left(x_{1}, \ldots, x_{s}\right) \bigoplus_{i=1}^{r_{n-1}} A\left(-d_{i, n-1}\right)$. Because this element is homogeneous, each of the f_{i} is a homogeneous polynomial and hence it must be the case that f_{i} is a nonzero constant for some i. Without loss of generality, we may assume that $f_{1}=c \in k^{\times}$. Hence $\left(1, c^{-1} f_{2}, \ldots, c^{-1} f_{r_{n-1}}\right) \in \operatorname{ker}\left(d_{n-1}\right)$. Thus

$$
d_{n-1}\left(e_{1}\right)=\sum_{i=2}^{r_{n-1}} c^{-1} f_{i} d_{n-1}\left(e_{i}\right)
$$

However, we chose the $d_{n-1}\left(e_{i}\right)$ to be a minimal set of generators of $\operatorname{ker}\left(d_{n-2}\right)$, so this is a contradiction.
Theorem 5.6 (Hilbert's syzygy theorem). Let $A=k\left[x_{1}, \ldots, x_{s}\right]$ be the usual graded polynomial ring and M a finite graded A-module. Then M has a finite free resolution of length at most s.

Proof. We first take $M=k=A /\left(x_{1}, \ldots, x_{s}\right)$ viewed as an A-module via the trivial action. Clearly, x_{1}, \ldots, x_{s} is a regular sequence in A and hence by the corollary to Theorem 5.2, the Koszul complex $K\left(x_{1}, \ldots, x_{s}\right)$ is a finite free resolution of k of length $n+1$.

Now let M be arbitrary. Pick a minimal graded free resolution of M as constructed above

$$
\cdots \rightarrow F_{n} \xrightarrow{d_{n}} F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M
$$

where F_{n} is free of rank r_{n}. Since the resolution is minimal, $\operatorname{im}\left(d_{n}\right) \subset\left(x_{1}, \ldots, x_{s}\right) F_{n-1}$ for all $n \geq 1$. Thus we have a commutative diagram

Hence by definition we have that

$$
\operatorname{Tor}_{n}^{A}(M, k)=k^{r_{n}}
$$

and so $\operatorname{dim}_{k} \operatorname{Tor}_{n}^{A}(M, k)=r_{n}$. But we can also compute $\operatorname{Tor}_{n}^{A}(M, k)$ using a projective resolution of k. In particular, we can use the finite free resolution of k given by the Koszul complex as outlined at the beginning. This resolution has length $s+1$ and hence $\operatorname{Tor}_{n}^{A}(M, k)=0$ for all $n>s+1$. In particular we have $r_{n}=0$ for all $n>s+1$ giving us the result.

5.2 Regular local rings

Let A, \mathfrak{m}, k be a Noetherian local ring. Let $\left\{\bar{x}_{1}, \ldots, \bar{x}_{r}\right\}$ be generators of $\mathfrak{m} / \mathfrak{m}^{2}$ as an A-module and hence as a k-vector space. Let $E:=A x_{1}+\cdots+A x_{r}$. Then $\mathfrak{m}=E+\mathfrak{m}^{2}$. Thus by Nakayama, $E=\mathfrak{m}$. So if we pick $\left\{\bar{x}_{1}, \ldots, \bar{x}_{r}\right\}$ to be a k-basis for $\mathfrak{m} / \mathfrak{m}^{2}$ we end up with a minimal set of generators of \mathfrak{m} and vice versa.

Definition 5.5. We define the embedding dimension of A, denoted by emb $\operatorname{dim} A$ to be the minimal number of generators of \mathfrak{m}; equivalently $\operatorname{emb} \operatorname{dim} A=\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$.

We always have $\operatorname{dim} A=\mathrm{ht} \mathfrak{m} \leq \operatorname{emb} \operatorname{dim} A$ by Krull's height theorem.
Definition 5.6. We say that a Noetherian local ring A is a regular local ring if $\operatorname{dim} A=\operatorname{emb} \operatorname{dim} A$.
Lemma 5.7. Let A, \mathfrak{m} be a Noetherian local ring and let $x_{1}, \ldots, x_{n} \in \mathfrak{m}$. Then we have

$$
\operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{n}\right)\right) \geq \operatorname{dim} A-n
$$

Equality holds if x_{1}, \ldots, x_{n} is a regular sequence.

Proof. Let $d:=\operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{n}\right)\right)=\delta\left(A /\left(x_{1}, \ldots, x_{n}\right)\right)$ by the fundamental theorem of dimension theory. Thus there exists a $\mathfrak{m} /\left(x_{1}, \ldots, x_{n}\right)$-primary ideal $\left(\bar{y}_{1}, \ldots, \bar{y}_{d}\right)$ of $A /\left(x_{1}, \ldots, x_{n}\right)$ that is generated by d elements. Then $\mathfrak{m} /\left(x_{1}, \ldots, x_{n}\right)$ is minimal over $\left(\bar{y}_{1}, \ldots, \bar{y}_{d}\right)$ and hence \mathfrak{m} is minimal over $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{d}\right)$. So $\operatorname{dim} A=\operatorname{ht} \mathfrak{m} \leq n+d$ by Krull's height theorem. Rearranging, we get $d \geq \operatorname{dim} A-n$.

If x_{1}, \ldots, x_{n} is a regular sequence, we prove by induction on n that $\operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{n}\right)\right) \leq \operatorname{dim} A-n$. Recall that for any ring A and any ideal I of A, we have $\operatorname{dim}(A / I) \leq \operatorname{dim} A-\operatorname{ht} I$. Now for $n=1$, $\operatorname{dim}(A / x A) \leq \operatorname{dim} A-\operatorname{ht}(x)$. But since x is regular, it is a nonzerodivisor of A and so ht $(x)=1$ by Krull's Hauptidealsatz. Now notice that $A /\left(x_{1}, \ldots, x_{n}\right)=\frac{A /\left(x_{1}, \ldots, x_{n-1}\right)}{\bar{x}_{n} A /\left(x_{1}, \ldots, x_{n-1}\right)}$, where \bar{x}_{n} denotes the image of x_{n} in $A /\left(x_{1}, \ldots, x_{n-1}\right)$. Since x_{1}, \ldots, x_{n} is a regular sequence, \bar{x}_{n} is a nonzerodivisor of $A /\left(x_{1}, \ldots, x_{n-1}\right)$ and thus again by Krull's Hauptidealsatz, we have $\operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{n}\right)\right) \leq \operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{n-1}\right)\right)-1$ and we are done by induction.

Corollary 5.8. Let A, \mathfrak{m} be a Noetherian local and M a finite A-module. If $x_{1}, \ldots, x_{n} \in \mathfrak{m}$ is an M-regular sequence then

$$
\operatorname{dim}\left(M /\left(x_{1}, \ldots, x_{n}\right) M\right)=\operatorname{dim} M-r
$$

Proof. By definition, we have $\operatorname{dim} M=\operatorname{dim}(A / \operatorname{Ann} M)$ and $\operatorname{dim}\left(M /\left(x_{1}, \ldots, x_{n}\right) M\right)=\operatorname{dim}\left(\frac{A / \operatorname{Ann} M}{\left(\overline{x_{1}}, \ldots, \bar{x}_{n}\right)}\right)$ where \bar{x}_{i} denotes the image of x_{i} in $A /$ Ann M. Then by Lemma 5.7, it suffices to show that $\bar{x}_{1}, \ldots, \bar{x}_{n}$ is a regular sequence in $A / \operatorname{Ann} M$. We do this by induction on $n \geq 1$. Let x be M-regular. Suppose that $\bar{x} a=0$ in $A /$ Ann M hence $x a \in$ Ann M. That is for all $m \in M, x a m=0$. But x is M-regular, so $a m=0$ for all $m \in M$ and so $\bar{a}=0$ in $A /$ Ann M, showing that \bar{x} is regular in $A /$ Ann M. Now let x_{1}, \ldots, x_{n} be an M-regular sequence, then x_{2}, \ldots, x_{n} is an $M / x_{1} M$-regular sequence, and so by induction, $\bar{x}_{2}, \ldots, \bar{x}_{n}$ is a regular sequence in $\frac{A / \operatorname{Ann} M}{\bar{x}_{1}}$. But by the case $n=1, \bar{x}_{1}$ is regular in $A / \mathrm{Ann} M$ and so we are done.

Note that the above shows that for A, \mathfrak{m} local Noetherian and M finite, the dimension of M is always greater or equal to the maximum length of an M-regular sequence contained in \mathfrak{m}. This is a notion that we will encounter again soon.

Lemma 5.9. Let A, \mathfrak{m}, k be a regular local ring of dimension n. Let $x_{1}, \ldots, x_{r} \in \mathfrak{m}$ be linearly independent as elements of the k-vector space $\mathfrak{m} / \mathfrak{m}^{2}$ (hence $r \leq n$), Then $A /\left(x_{1}, \ldots, x_{r}\right)$ is a regular local ring and

$$
\operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{r}\right)\right)=n-r
$$

Proof. We know by Lemma 5.4 that $\operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{r}\right)\right) \geq n-r$. Now since $\bar{x}_{1}, \ldots, \bar{x}_{r}$ are linearly independent, we can extend to a basis $\left\{\bar{x}_{1}, \ldots, \bar{x}_{r}, \bar{x}_{r+1}, \ldots, \bar{x}_{n}\right\}$ of $\mathfrak{m} / \mathfrak{m}^{2}$. Then x_{1}, \ldots, x_{n} is a minimal generating set of \mathfrak{m} and hence

$$
\operatorname{emb} \operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{r}\right)\right)=n-r \quad \text { and } \quad \operatorname{dim}\left(A /\left(x_{1}, \ldots, x_{r}\right)\right)=\operatorname{ht} \mathfrak{m} /\left(x_{1}, \ldots, x_{r}\right) \leq n-r
$$

by Krull, as $\mathfrak{m} /\left(x_{1}, \ldots, x_{r}\right)$ is generated by the images of x_{r+1}, \ldots, x_{n}.
Theorem 5.10. Let A be a regular local ring. Then A is an integral domain.
Proof. We argue by induction on $n=\operatorname{dim} A=\operatorname{emb} \operatorname{dim} A \geq 0$. If $n=0$, then $\mathfrak{m}=0$ and hence A is a field. If $n=1$, then $\mathfrak{m}=A x$ and since $\operatorname{dim} A=1$, we can find a prime $\mathfrak{P} \subsetneq \mathfrak{m}$. Then for $y \in \mathfrak{P}, y=a x$ for some $a \in A$. But $a x \in \mathfrak{P}$ and clearly $x \notin \mathfrak{P}$. Hence $\mathfrak{P}=x \mathfrak{P}$ and so by Nakayama, $\mathfrak{P}=0$ so A is a domain. Now let $n>1$. Let $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r}$ be the minimal primes of A. Then since $\operatorname{dim} A>1$, \mathfrak{m} is not contained in any of $\mathfrak{m}^{2}, \mathfrak{P}_{1}, \mathfrak{P}_{r}$. So by prime avoidance, we can find $x \in \mathfrak{m}$, that i snot contained in any of $\mathfrak{m}^{2}, \mathfrak{P}_{1}, \mathfrak{P}_{r}$. Then $\bar{x} \in \mathfrak{m} / \mathfrak{m}^{2}$ is nonzero and so by Lemma $5.5, A_{1}:=A / x A$ is a regular local ring of dimension $n-1$. By induction we have that A_{1} is a domain and hence $A x$ is a prime ideal of A and so must contain a minimal prime \mathfrak{P}_{i} for some i. Since by construction $x \notin \mathfrak{P}_{i}$, the same argument as in the case $n=1$, gives that $\mathfrak{P}_{i}=0$ and so A is a domain.

Theorem 5.11. Let A, \mathfrak{m}, k be a d-dimensional Noetherian local ring. Then equivalent conditions:
(1) A is regular
(2) $\operatorname{gr}_{\mathfrak{m}}(A)$ is isomorphic as a graded ring to the polynomial ring $k\left[x_{1}, \ldots, x_{d}\right]$ graded as usual.

Proof. For $1 \Rightarrow 2$, note that since A is regular of dimension d, \mathfrak{m} is generated by d elements, say ξ_{1}, \ldots, ξ_{d}. Let $\bar{\xi}_{i}$ denote the image of ξ_{i} in $\mathfrak{m} / \mathfrak{m}^{2}$. Then $\operatorname{gr} \mathfrak{m}(A)=k\left[\bar{\xi}_{1}, \ldots, \bar{\xi}_{d}\right]$ and we have a surjective graded ring homomorphism

$$
\varphi: k\left[x_{1}, \ldots, x_{d}\right] \rightarrow k\left[\bar{\xi}_{1}, \ldots, \bar{\xi}_{d}\right]
$$

Let $I:=\operatorname{ker} \varphi$. Then I is a homogeneous ideal, and hence φ induces an isomorphism of graded rings. Suppose for contradiction that I is nonzero. Then we can find a nonzero homogeneous element $f \in I_{r}=$ $I \cap k\left[x_{1}, \ldots, x_{d}\right]_{r}$. Now

$$
\begin{gathered}
\operatorname{length}_{A}\left(\operatorname{gr}_{\mathfrak{m}}(A)\right)=\operatorname{length}_{A}\left(\left(k\left[x_{1}, \ldots, x_{d}\right] / I\right)_{n}\right) \\
=\operatorname{dim}_{k}\left(k\left[x_{1}, \ldots, x_{d}\right]_{n}\right)-\operatorname{dim}_{k}\left(I_{n}\right)=\binom{n+d-1}{d-1}-\operatorname{dim}_{k}\left(I_{n}\right)
\end{gathered}
$$

For $n>r, \operatorname{dim}_{k}\left((f)_{n}\right)=\operatorname{dim}_{k}\left(k\left[x_{1}, \ldots, x_{d}\right]_{n-r}\right)=\binom{n+d-r-1}{d-1}$. And since $f \in I, \operatorname{dim}_{k}\left((f)_{n}\right) \leq \operatorname{dim}_{k}\left(I_{n}\right)$, SO

$$
\operatorname{length}_{A}\left(\operatorname{gr}_{\mathfrak{m}}(A)\right) \leq\binom{ n+d-1}{d-1}-\binom{n+d-r-1}{d-1}
$$

which is a polynomial in n of degree $d-2$ for large enough n. In other words, the Hilbert polynomial of $\operatorname{gr}_{\mathfrak{m}}(A)$ has degree at most $d-2$ and so (recall sections 4.1 and 4.2), the Samuel function of A has degree at most $d-1$. But by the fundamental theorem, the degree of the Samuel function must equal the dimension of A which is d. This gives a contradiction.

For $2 \Rightarrow 1$, if $\operatorname{gr}_{\mathfrak{m}}(A)$ is isomorphic to $k\left[x_{1}, \ldots, x_{d}\right]$ as graded rings, then $\mathfrak{m} / \mathfrak{m}^{2}$ is generated as a k-vector space by d elements. Hence

$$
d=\operatorname{dim} A \leq e m b \operatorname{dim} A \leq d
$$

and so we must equality.
Theorem 5.11 gives an alternative proof of Theorem 5.10: If A, \mathfrak{m}, k is regular local, then by 5.7 , the associated graded $\operatorname{gr}_{\mathfrak{m}}(A)$ is a polynomial ring and hence an integral domain. Let $a, b \in A$ be nonzero. Then by Krull's intersection theorem (Theorem 3.5), since a and b are nonzero, we can find integers $n, m \geq 1$ such that $a \in \mathfrak{m}^{n-1}-\mathfrak{m}^{n}$ and $b \in \mathfrak{m}^{m-1}-\mathfrak{m}^{m}$. Then the elements $\bar{a} \in \mathfrak{m}^{n-1} / \mathfrak{m}^{n}$ and $\bar{b} \in \mathfrak{m}^{m-1} / \mathfrak{m}^{m}$ are nonzero in $\operatorname{gr}_{\mathfrak{m}}(A)$. Hence $\overline{a b} \in \mathfrak{m}^{n+m-2} / \mathfrak{m}^{n+m-1}$ is nonzero. Hence $a b \notin \mathfrak{m}^{n+m-1}$ and thus $a b$ cannot be zero in A.

