Commutative Algebra II 5 Koszul complex, regular sequences

2022–2023 Notes by Alexandros Groutides partly based on lectures by Miles Reid at the University of Warwick

5 Koszul complex and regular local rings

We start with two alternative definitions of the Koszul complex. Recall that a chain complex of *R*-modules $M_{\bullet}, d_{\bullet}^{M}$ is a sequence of *R*-modules M_{i} and homomorphisms

$$\cdots \to M_{m+1} \xrightarrow{d_{m+1}^M} M_m \xrightarrow{d_m^M} M_{m-1} \to \ldots$$

such that the composite of any two consecutive maps is zero. Given two chain complexes of *R*-modules $M_{\bullet}, d_{\bullet}^{M}$ and $N_{\bullet}, d_{\bullet}^{N}$, we can form the double complex $M_{\bullet} \otimes_{A} N_{\bullet}$

where the horizonal differentials are given by $\delta^h := d_m^M \otimes 1 : M_m \otimes_A N_n \to M_{m-1} \otimes_A N_n$ and the vertical differentials are given by $\delta^v := (-1)^m 1 \otimes d_n^N : M_m \otimes_A N_n \to M_m \otimes_A N_{n-1}$. Because of this we see that each square in the double complex, anti-commutes. This is done on purpose since it allows to define a chain complex from this double complex as follows. We define the *total complex* $\text{Tot}^{\oplus}(M_{\bullet} \otimes_A N_{\bullet})$ of the above tensor double complex to have degree $d \geq 0$ part

$$\operatorname{Tot}^{\oplus}(M_{\bullet}\otimes_{A}N_{\bullet})_{d} = \bigoplus_{m+n=d} M_{m} \otimes_{A} N_{n}$$

and differential $\delta := \delta^h + \delta^v$. The fact that the squares in the double complex anti-commute means that $\delta^2 = 0$ and so this is indeed a complex. Visually this is just taking diagonal slices in our double complex along lines of slope -1 and the differentials map one diagonal slice to the previous one in the only way possible, that is, in each summand you go down and to the left. Here a useful remark is that the total complex is commutative in the sense that $\operatorname{Tot}^{\oplus}(M_{\bullet} \otimes_A N_{\bullet})$ and $\operatorname{Tot}^{\oplus}(N_{\bullet} \otimes_A M_{\bullet})$ are isomorphic as chain complexes. It is also associative in the sense that $\operatorname{Tot}^{\oplus}(\operatorname{Tot}^{\oplus}(M_{\bullet} \otimes_A N_{\bullet}) \otimes_A P_{\bullet})$ and $\operatorname{Tot}^{\oplus}(M_{\bullet} \otimes_A \operatorname{Tot}^{\oplus}(N_{\bullet} \otimes_A P_{\bullet}))$ are isomorphic as chain complexes.

Definition 5.1 (Koszul complex 1). Let A be a ring and $x \in A$. We define the Koszul complex K(x) to be the complex

$$0 \to A \xrightarrow{x} A \to 0$$

given by multiplication by x. Now for $x_1, \ldots, x_n \in A$, we define the Koszul complex $K(x_1, \ldots, x_n)$ inductively by $K(x_1, x_2) := \text{Tot}^{\oplus}(K(x_1) \otimes_A K(x_2))$, and

$$K(x_1,\ldots,x_n) := \operatorname{Tot}^{\oplus}(K(x_1,\ldots,x_{n-1}) \otimes_A K(x_n)).$$

This definition will be extremely useful when proving stuff about *Koszul homology* that we define later.

Definition 5.2 (Koszul complex 2). Given $x_1, \ldots, x_n \in A$, we define the Koszul complex

$$\cdots \to K_n \to K_{n-1} \to \cdots \to K_1 \to K_0 \to 0$$

where $K_0 := A$ and for $p \ge 1$ we have $K_p := \bigwedge^p (\bigoplus_{i=1}^n Ae_i)$, the *p*th exterior algebra of the free *A*-module of rank *n*, which is the free *A*-module of rank $\binom{n}{p}$ with basis $\{e_{i_1} \land \cdots \land e_{i_p} \mid 1 \le i_1 < i_2 < \cdots < i_p \le n\}$

We leave the equivalence of the two definitions as an exercise.

Definition 5.3 (Koszul homology). Let M be an A-module and $x_1, \ldots, x_n \in A$. The Koszul homology with coefficients in M is defined by

$$H_p(x_1,\ldots,x_n,M) := H_p(M \otimes_A K(x_1,\ldots,x_n))$$

For a chain complex C_{\bullet} of A-modules, we define the Koszul homology with coefficients in C_{\bullet} to be

$$H_p(x_1,\ldots,x_n,C_{\bullet}) := H_p(\operatorname{Tot}^{\oplus}(C_{\bullet} \otimes_A K(x_1,\ldots,x_n))).$$

Remark. An easy check shows that we always have

$$H_0(x_1, \dots, x_n, M) = M/(x_1, \dots, x_n)M$$
$$H_n(x_1, \dots, x_n, M) = \{\xi \in M \mid x_1\xi = \dots = x_n\xi = 0\}$$

Theorem 5.1 (Künneth formula for Koszul homology). Let C_{\bullet} , d_{\bullet} be a chain complex of A-modules and $x \in A$. Then we have a short exact sequence

$$0 \to H_0(x, H_q(C_{\bullet})) \to H_q(x, C_{\bullet}) \to H_1(x, H_{q-1}(C_{\bullet})) \to 0$$

Proof. A calculation involving double complexes shows that the total complex $\operatorname{Tot}^{\oplus}(C_{\bullet} \otimes_A K(x))$ is just

$$\operatorname{Tot}^{\oplus}(C_{\bullet}\otimes_A K(x))_{q+1} = C_{q+1} \oplus C_q$$

with differential

$$\Delta_{q+1} := \begin{pmatrix} d_{q+1} & (-1)^q x \\ 0 & d_q \end{pmatrix}$$

We end up with the short exact sequence of chain complexes

$$0 \to C_{\bullet} \to \operatorname{Tot}^{\oplus}(C_{\bullet} \otimes_A K(x)) \to C_{\bullet}[-1] \to 0$$

where $C_{\bullet}[-1]$ denotes the complex C_{\bullet} shifted in degree by -1 and same differential (that is, $C_q[-1] = C_{q-1}$). This short exact sequence is given explicitly by

$$0 \longrightarrow C_{q+1} \longleftrightarrow C_{q+1} \oplus C_q \longrightarrow C_q \longrightarrow 0$$
$$\downarrow^{d_{q+1}} \qquad \downarrow^{\Delta_{q+1}} \qquad \downarrow^{d_q}$$
$$0 \longrightarrow C_q \longleftrightarrow C_q \oplus C_{q-1} \longrightarrow C_{q-1} \longrightarrow 0$$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

One checks that the squares commute and hence this is indeed a short exact sequence of chain complexes. Now taking homology gives us a long exact sequence

$$\dots \longrightarrow H_{q+1}(C_{\bullet}[-1]) \xrightarrow{\delta_q} H_q(C_{\bullet}) \longrightarrow H_q(x, C_{\bullet}) \longrightarrow H_q(C_{\bullet}[-1]) \xrightarrow{\delta_{q-1}} H_{q-1}(C_{\bullet}) \longrightarrow \dots$$

which simplifies to

$$\dots \longrightarrow H_q(C_{\bullet}) \xrightarrow{\delta_q} H_q(C_{\bullet}) \longrightarrow H_q(x, C_{\bullet}) \longrightarrow H_{q-1}(C_{\bullet}) \xrightarrow{\delta_{q-1}} H_{q-1}(C_{\bullet}) \longrightarrow \dots$$

We now claim that the connecting homomorphisms δ_q are just multiplication by $(-1)^q x$. To see this we trace the steps of the snake lemma. Let $c \in C_{n+1}[-1] = C_n$ be a cycle (that is, $d_n(c) = 0$). Then c is the image of $(c', c) \in C_{n+1} \oplus C_n$ for some $c' \in C_{n+1}$. Applying Δ_{n+1} to (c', c) we get

$$(d_{n+1}(c') + (-1)^n xc, d_n(c)) = (d_{n+1}(c') + (-1)^n xc, 0) \in C_n \oplus C_{n-1},$$

since c is a cycle. Then by construction of the connecting homomorphism on homology, we have that $\delta_q([c]) = [d_{q+1}(c') + (-1)^q xc] = (-1)^q x[c]$, since $[d_{n+1}(c')] = 0$ as $d_{n+1}(c')$ is a boundary. This proves our claim. Hence from the long exact sequence above, we get a short exact sequence

$$0 \longrightarrow \frac{H_q(C_{\bullet})}{xH_q(C_{\bullet})} \longrightarrow H_q(x, C_{\bullet}) \longrightarrow \{[c] \in H_{q-1}(C_{\bullet}) \mid |x[c] = 0\} \longrightarrow 0$$

But this is just the short exact sequence in question, by the remark before the theorem.

Corollary 5.2. Let $x \in A$ and C_{\bullet} a chain complex of A-modules. Then the Koszul homology $H_q(x, C_{\bullet})$ is annihilated by x.

Proof. The leftmost map in the above short exact sequence is given explicitly by

$$\iota^* \colon \frac{H_q(C_{\bullet})}{xH_q(C_{\bullet})} \longrightarrow H_q(x, C_{\bullet}) \ , \ \ [c_q] + xH_q(C_{\bullet}) \mapsto [(c_q, 0)]$$

where c_q is a cycle. Let $[(c_q, c_{q-1})] \in H_q(x, C_{\bullet})$ for some cycle $(c_q, c_{q-1}) \in C_q \oplus C_{q-1}$. This gives

$$(0,0) = \Delta(c_q, c_{q-1}) = (d_q(c_q) + (-1)^{q-1} x c_{q-1}, d_{q-1}(c_{q-1}))$$

It follows that $[(c_q, c_{q-1})] = [(c_q, 0)] + [0, c_{q-1})] = \iota^*([c_q] + xH_q(C_{\bullet})) + [(0, c_{q-1})]$. Hence

$$x[(c_q, c_{q-1})] = \iota^*(x[c_q] + xH_q(C_{\bullet})) + [(0, xc_{q-1})] = 0 + (-1)^{q-1}[(0, d_q(c_q)).$$

But now $\Delta_{q+1}(0, c_q) = ((-1)^q x c_q, d_q(c_q))$ and so $x[(c_q, c_{q-1})] = (-1)^{q-1}[\Delta_{q+1}(0, c_q)] - [(x c_q, 0)]$. The first term is zero since $\Delta_{q+1}(0, c_q)$ is a boundary, and we have already showed that the second term is zero.

Corollary 5.3. Let $x_1, \ldots, x_n \in A$ and let C_{\bullet} be a chain complex of A-modules. Then the ideal (x_1, \ldots, x_n) of A annihilates the Koszul homology $H_q(x_1, \ldots, x_n, C_{\bullet})$.

Proof. This follows from Corollary 5.2 together with the commutativity and associativity of the total complex associated to a tensor double complex. \Box

Definition 5.4 (Regular sequence). Let M be an A-module. A sequence $x_1, \ldots, x_n \in A$ is M-regular if

- (1) $M/(x_1, \ldots, x_n)M \neq 0;$
- (2) x_1 is a nonzero divisor of M; and
- (3) x_i is a nonzero divisor of $M/(x_1, \ldots, x_{i-1})M$ for $2 \le i \le n$.
- **Theorem 5.4.** (1) Let M be an A-module and x_1, \ldots, x_n an M-regular sequence. Then the Koszul cohomology vanishes: $H_p(x_1, \ldots, x_n, M) = 0$ for all p > 0.
- (2) If A, \mathfrak{m} is a Noetherian local ring, M a finite A-module, $x_1, \ldots, x_n \in \mathfrak{m}$ and $H_1(x_1, \ldots, x_n, M) = 0$, then x_1, \ldots, x_n is an M-regular sequence.

Proof. (1) By induction on $n \ge 1$. If $n = 1, H_p(x_1, M)$ is the homology of the complex

$$0 \to M \xrightarrow{x_1} M \to 0$$

and hence $H_p(x_1, M) = 0$ for $p \ge 2$ and $H_p(x_1, M) = \ker(x_1) = 0$ since x_1 is *M*-regular by assumption. Now let n > 1. Let C_{\bullet} be the complex $M \otimes_A K(x_1, \ldots, x_{n-1})$. Then $H_p(x_1, \ldots, x_n, M) = H_p(x_n, C_{\bullet})$. Hence by Theorem 5.1 we have a short exact sequence

$$0 \to H_0(x_n, H_p(C_{\bullet})) \to H_p(x_1, \dots, x_n, M) \to H_1(x_n, H_{p-1}(C_{\bullet})) \to 0$$

By definition, $H_p(C_{\bullet}) = H_p(x_1, \dots, x_{n-1}, M)$ which is zero for p > 0 by induction. Thus from the short exact sequence we see that $H_p(x_1, \dots, x_n, M) = 0$ for p > 1 since the terms on the left and on the right vanish. Now for p = 1, the left most term still vanishes, hence we have

$$H_p(x_1, \ldots, x_n, M) \simeq H_1(x_n, H_0(x_n, \ldots, x_{n-1}, M)).$$

The latter is equal to the 1st homology of the complex

$$0 \to M/(x_1, \dots, x_{n-1})M \xrightarrow{x_n} M/(x_1, \dots, x_{n-1})M \to 0$$

which is zero, since x_n is $M/(x_1, \ldots, x_{n-1})M$ -regular.

(2) We again proceed by induction on $n \ge 1$. The result is trivial for n = 1. Let n > 1 and again let C_{\bullet} be the complex $M \otimes_A K(x_1, \ldots, x_{n-1})$. By the proof of Theorem 5.1, we have an exact sequence

$$H_1(C_{\bullet}) \xrightarrow{-x_n} H_1(C_{\bullet}) \to H_1(x_n, C_{\bullet}) = H_1(x_1, \dots, x_n, M) = 0$$

Hence we have that $H_1(C_{\bullet}) = x_n H_1(C_{\bullet})$. Now since A is Noetherian and M is finite, $H_1(C_{\bullet}) = H_1(x_1, \ldots, x_{n-1}, M)$ is a finite A-module. Since $x_n \in \mathfrak{m}$, we get $H_1(x_1, \ldots, x_{n-1}, M) = 0$ from Nakayama's Lemma. Thus by induction, x_1, \ldots, x_{n-1} is an M-regular sequence. Now using Theorem 5.1 again, we have a short exact sequence

$$0 \to H_0(x_n, H_1(C_{\bullet})) \to H_1(x_1, \dots, x_n, M) \to H_1(x_n, H_0(C_{\bullet})) \to 0$$

where the two leftmost terms are zero. Thus $H_1(x_n, H_0(C_{\bullet})) = H_1(x_n, M/(x_1, \dots, x_{n-1})M) = 0$, which implies x_n is $M/(x_1, \dots, x_{n-1})M$ -regular and thus (x_1, \dots, x_n) is an M-regular sequence.

Corollary 5.5. If $x_1, \ldots, x_n \in A$ is a regular sequence, the Koszul complex $K(x_1, \ldots, x_n)$ is a finite free resolution of $A/(x_1, \ldots, x_n)$.

Proof. This follows from Theorem 5.4, Part 1 and the fact that $H_0(x_1, \ldots, x_n, A) = A/(x_1, \ldots, x_n)$

5.1 Hilbert's syzygy theorem

Let $A = k[x_1, \ldots, x_s]$ be the usual graded polynomial ring and M a finite graded A module. Assume M is generated by homogeneous generators m_1, \ldots, m_{r_0} of degree $d_{i,0}$. For a nonnegative integer d, we put A(d) for the A-module A but with shifted grading by -d. This means that A(-d) is the graded module with jth graded piece $A(-d)_j = A_{j-d}$. (Thus the generator $1 \in A$ has degree d in A(-d)). We have a surjective homomorphism of degree 0

$$d_0 \colon \bigoplus_{i=1}^{r_0} A(-d_{i,0}) \longrightarrow M \quad \text{given by } 1_i \mapsto m_i,$$

where $e_i := (0, \ldots, 1, \ldots, 0)$ with 1 in the *i*th place. On the left, the grading is $\bigoplus_{i=1}^{r_0} A(-d_{i,0}) = \bigoplus_{j\geq 0} (\bigoplus_{i=1}^{r_0} A(-d_{i,0})_j)$, so that 1_i has degree $d_{i,0}$. This makes d_0 a homomorphism of graded A-modules. The kernel $K := \ker(d_0)$ is a homogeneous submodule, and since A is Noetherian, it is generated by finitely many homogeneous elements. Replace M with K and repeat the above process. Iterating this, we get a graded free resolution of M

$$\cdots \to \bigoplus_{i=1}^{r_n} A(-d_{i,n}) \xrightarrow{d_n} \bigoplus_{i=1}^{r_{n-1}} A(-d_{i,n-1}) \to \cdots \to \bigoplus_{i=1}^{r_0} A(-d_{i,0}) \xrightarrow{d_0} M \to 0$$

If we pick a minimal set of generators at each step, the resolution we end up with is called a *minimal* graded free resolution of M. In this case, I claim that $\operatorname{im}(d_n) \subset (x_1, \ldots, x_s) \bigoplus_{i=1}^{r_{n-1}} A(-d_{i,n-1})$ for all $n \geq 1$. To see this, suppose not. Since $\operatorname{im}(d_n) = \ker(d_{n-1})$ is a homogeneous ideal, we can find a

homogeneous element $(f_1, \ldots, f_{r_{n-1}}) \in \operatorname{im}(d_n)$ that is not in $(x_1, \ldots, x_s) \bigoplus_{i=1}^{r_{n-1}} A(-d_{i,n-1})$. Because this element is homogeneous, each of the f_i is a homogeneous polynomial and hence it must be the case that f_i is a nonzero constant for some *i*. Without loss of generality, we may assume that $f_1 = c \in k^{\times}$. Hence $(1, c^{-1}f_2, \ldots, c^{-1}f_{r_{n-1}}) \in \operatorname{ker}(d_{n-1})$. Thus

$$d_{n-1}(e_1) = \sum_{i=2}^{r_{n-1}} c^{-1} f_i d_{n-1}(e_i).$$

However, we chose the $d_{n-1}(e_i)$ to be a minimal set of generators of ker (d_{n-2}) , so this is a contradiction.

Theorem 5.6 (Hilbert's syzygy theorem). Let $A = k[x_1, ..., x_s]$ be the usual graded polynomial ring and M a finite graded A-module. Then M has a finite free resolution of length at most s.

Proof. We first take $M = k = A/(x_1, \ldots, x_s)$ viewed as an A-module via the trivial action. Clearly, x_1, \ldots, x_s is a regular sequence in A and hence by the corollary to Theorem 5.2, the Koszul complex $K(x_1, \ldots, x_s)$ is a finite free resolution of k of length n + 1.

Now let M be arbitrary. Pick a minimal graded free resolution of M as constructed above

$$\cdots \to F_n \xrightarrow{d_n} F_{n-1} \to \cdots \to F_1 \to F_0 \to M$$

where F_n is free of rank r_n . Since the resolution is minimal, $im(d_n) \subset (x_1, \ldots, x_s)F_{n-1}$ for all $n \ge 1$. Thus we have a commutative diagram

Hence by definition we have that

$$\operatorname{For}_n^A(M,k) = k^{r_n}$$

and so $\dim_k \operatorname{Tor}_n^A(M, k) = r_n$. But we can also compute $\operatorname{Tor}_n^A(M, k)$ using a projective resolution of k. In particular, we can use the finite free resolution of k given by the Koszul complex as outlined at the beginning. This resolution has length s + 1 and hence $\operatorname{Tor}_n^A(M, k) = 0$ for all n > s + 1. In particular we have $r_n = 0$ for all n > s + 1 giving us the result.

5.2 Regular local rings

Let A, \mathfrak{m}, k be a Noetherian local ring. Let $\{\overline{x}_1, \ldots, \overline{x}_r\}$ be generators of $\mathfrak{m}/\mathfrak{m}^2$ as an A-module and hence as a k-vector space. Let $E := Ax_1 + \cdots + Ax_r$. Then $\mathfrak{m} = E + \mathfrak{m}^2$. Thus by Nakayama, $E = \mathfrak{m}$. So if we pick $\{\overline{x}_1, \ldots, \overline{x}_r\}$ to be a k-basis for $\mathfrak{m}/\mathfrak{m}^2$ we end up with a minimal set of generators of \mathfrak{m} and vice versa.

Definition 5.5. We define the *embedding dimension* of A, denoted by emb dim A to be the minimal number of generators of \mathfrak{m} ; equivalently emb dim $A = \dim_k \mathfrak{m}/\mathfrak{m}^2$.

We always have dim $A = ht \mathfrak{m} \leq emb \dim A$ by Krull's height theorem.

Definition 5.6. We say that a Noetherian local ring A is a regular local ring if dim $A = \operatorname{emb} \operatorname{dim} A$.

Lemma 5.7. Let A, \mathfrak{m} be a Noetherian local ring and let $x_1, \ldots, x_n \in \mathfrak{m}$. Then we have

$$\dim(A/(x_1,\ldots,x_n)) \ge \dim A - n$$

Equality holds if x_1, \ldots, x_n is a regular sequence.

Proof. Let $d := \dim(A/(x_1, \ldots, x_n)) = \delta(A/(x_1, \ldots, x_n))$ by the fundamental theorem of dimension theory. Thus there exists a $\mathfrak{m}/(x_1, \ldots, x_n)$ -primary ideal $(\overline{y}_1, \ldots, \overline{y}_d)$ of $A/(x_1, \ldots, x_n)$ that is generated by d elements. Then $\mathfrak{m}/(x_1, \ldots, x_n)$ is minimal over $(\overline{y}_1, \ldots, \overline{y}_d)$ and hence \mathfrak{m} is minimal over $(x_1, \ldots, x_n, y_1, \ldots, y_d)$. So dim $A = \operatorname{ht} \mathfrak{m} \leq n + d$ by Krull's height theorem. Rearranging, we get $d \geq \dim A - n$.

If x_1, \ldots, x_n is a regular sequence, we prove by induction on n that $\dim(A/(x_1, \ldots, x_n)) \leq \dim A - n$. Recall that for any ring A and any ideal I of A, we have $\dim(A/I) \leq \dim A - \operatorname{ht} I$. Now for n = 1, $\dim(A/xA) \leq \dim A - \operatorname{ht}(x)$. But since x is regular, it is a nonzerodivisor of A and so $\operatorname{ht}(x) = 1$ by Krull's Hauptidealsatz. Now notice that $A/(x_1, \ldots, x_n) = \frac{A/(x_1, \ldots, x_{n-1})}{\overline{x_n A}/(x_1, \ldots, x_{n-1})}$, where \overline{x}_n denotes the image of x_n in $A/(x_1, \ldots, x_{n-1})$. Since x_1, \ldots, x_n is a regular sequence, \overline{x}_n is a nonzerodivisor of $A/(x_1, \ldots, x_{n-1})$ and thus again by Krull's Hauptidealsatz, we have $\dim(A/(x_1, \ldots, x_n)) \leq \dim(A/(x_1, \ldots, x_{n-1})) - 1$ and we are done by induction.

Corollary 5.8. Let A, \mathfrak{m} be a Noetherian local and M a finite A-module. If $x_1, \ldots, x_n \in \mathfrak{m}$ is an M-regular sequence then

$$\dim(M/(x_1,\ldots,x_n)M) = \dim M - r$$

Proof. By definition, we have dim $M = \dim(A/\operatorname{Ann} M)$ and $\dim(M/(x_1, \ldots, x_n)M) = \dim(\frac{A/\operatorname{Ann} M}{(\overline{x_1, \ldots, \overline{x_n}})})$ where \overline{x}_i denotes the image of x_i in $A/\operatorname{Ann} M$. Then by Lemma 5.7, it suffices to show that $\overline{x}_1, \ldots, \overline{x}_n$ is a regular sequence in $A/\operatorname{Ann} M$. We do this by induction on $n \ge 1$. Let x be M-regular. Suppose that $\overline{x}a = 0$ in $A/\operatorname{Ann} M$ hence $xa \in \operatorname{Ann} M$. That is for all $m \in M$, xam = 0. But x is M-regular, so am = 0for all $m \in M$ and so $\overline{a} = 0$ in $A/\operatorname{Ann} M$, showing that \overline{x} is regular in $A/\operatorname{Ann} M$. Now let x_1, \ldots, x_n be an M-regular sequence, then x_2, \ldots, x_n is an M/x_1M -regular sequence, and so by induction, $\overline{x}_2, \ldots, \overline{x}_n$ is a regular sequence in $\frac{A/\operatorname{Ann} M}{\overline{x}_1}$. But by the case n = 1, \overline{x}_1 is regular in $A/\operatorname{Ann} M$ and so we are done.

Note that the above shows that for A, \mathfrak{m} local Noetherian and M finite, the dimension of M is always greater or equal to the maximum length of an M-regular sequence contained in \mathfrak{m} . This is a notion that we will encounter again soon.

Lemma 5.9. Let A, \mathfrak{m}, k be a regular local ring of dimension n. Let $x_1, \ldots, x_r \in \mathfrak{m}$ be linearly independent as elements of the k-vector space $\mathfrak{m}/\mathfrak{m}^2$ (hence $r \leq n$), Then $A/(x_1, \ldots, x_r)$ is a regular local ring and

$$\dim(A/(x_1,\ldots,x_r)) = n - r.$$

Proof. We know by Lemma 5.4 that $\dim(A/(x_1,\ldots,x_r)) \ge n-r$. Now since $\overline{x}_1,\ldots,\overline{x}_r$ are linearly independent, we can extend to a basis $\{\overline{x}_1,\ldots,\overline{x}_r,\overline{x}_{r+1},\ldots,\overline{x}_n\}$ of $\mathfrak{m}/\mathfrak{m}^2$. Then x_1,\ldots,x_n is a minimal generating set of \mathfrak{m} and hence

emb dim
$$(A/(x_1,\ldots,x_r)) = n-r$$
 and dim $(A/(x_1,\ldots,x_r)) = \operatorname{ht} \mathfrak{m}/(x_1,\ldots,x_r) \le n-r$

by Krull, as $\mathfrak{m}/(x_1,\ldots,x_r)$ is generated by the images of x_{r+1},\ldots,x_n .

Theorem 5.10. Let A be a regular local ring. Then A is an integral domain.

Proof. We argue by induction on $n = \dim A = \operatorname{emb} \dim A \ge 0$. If n = 0, then $\mathfrak{m} = 0$ and hence A is a field. If n = 1, then $\mathfrak{m} = Ax$ and since $\dim A = 1$, we can find a prime $\mathfrak{P} \subsetneq \mathfrak{m}$. Then for $y \in \mathfrak{P}$, y = ax for some $a \in A$. But $ax \in \mathfrak{P}$ and clearly $x \notin \mathfrak{P}$. Hence $\mathfrak{P} = x\mathfrak{P}$ and so by Nakayama, $\mathfrak{P} = 0$ so A is a domain. Now let n > 1. Let $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ be the minimal primes of A. Then since $\dim A > 1$, \mathfrak{m} is not contained in any of $\mathfrak{m}^2, \mathfrak{P}_1, \mathfrak{P}_r$. So by prime avoidance, we can find $x \in \mathfrak{m}$, that i snot contained in any of $\mathfrak{m}^2, \mathfrak{P}_1, \mathfrak{P}_r$. So by prime avoidance, we can find $x \in \mathfrak{m}$, that i snot contained in any of $\mathfrak{m}^2, \mathfrak{P}_1, \mathfrak{P}_r$. Then $\overline{x} \in \mathfrak{m}/\mathfrak{m}^2$ is nonzero and so by Lemma 5.5, $A_1 := A/xA$ is a regular local ring of dimension n - 1. By induction we have that A_1 is a domain and hence Ax is a prime ideal of A and so must contain a minimal prime \mathfrak{P}_i for some i. Since by construction $x \notin \mathfrak{P}_i$, the same argument as in the case n = 1, gives that $\mathfrak{P}_i = 0$ and so A is a domain.

Theorem 5.11. Let A, \mathfrak{m}, k be a d-dimensional Noetherian local ring. Then equivalent conditions:

	_	
	-	

(1) A is regular

(2) $\operatorname{gr}_{\mathfrak{m}}(A)$ is isomorphic as a graded ring to the polynomial ring $k[x_1,\ldots,x_d]$ graded as usual.

Proof. For $1 \Rightarrow 2$, note that since A is regular of dimension d, \mathfrak{m} is generated by d elements, say ξ_1, \ldots, ξ_d . Let $\overline{\xi}_i$ denote the image of ξ_i in $\mathfrak{m}/\mathfrak{m}^2$. Then $\operatorname{gr}_{\mathfrak{m}}(A) = k[\overline{\xi}_1, \ldots, \overline{\xi}_d]$ and we have a surjective graded ring homomorphism

$$\varphi \colon k[x_1, \dots, x_d] \to k[\overline{\xi}_1, \dots, \overline{\xi}_d]$$

Let $I := \ker \varphi$. Then I is a homogeneous ideal, and hence φ induces an isomorphism of graded rings. Suppose for contradiction that I is nonzero. Then we can find a nonzero homogeneous element $f \in I_r = I \cap k[x_1, \ldots, x_d]_r$. Now

$$\operatorname{length}_{A}(\operatorname{gr}_{\mathfrak{m}}(A)) = \operatorname{length}_{A}((k[x_{1},\ldots,x_{d}]/I)_{n})$$
$$= \operatorname{dim}_{k}(k[x_{1},\ldots,x_{d}]_{n}) - \operatorname{dim}_{k}(I_{n}) = \binom{n+d-1}{d-1} - \operatorname{dim}_{k}(I_{n})$$

For n > r, $\dim_k((f)_n) = \dim_k(k[x_1, \dots, x_d]_{n-r}) = \binom{n+d-r-1}{d-1}$. And since $f \in I$, $\dim_k((f)_n) \le \dim_k(I_n)$, so $\operatorname{length}_A(\operatorname{gr}_{\mathfrak{m}}(A)) \le \binom{n+d-1}{d-1} - \binom{n+d-r-1}{d-1}$

which is a polynomial in n of degree d-2 for large enough n. In other words, the Hilbert polynomial of $\operatorname{gr}_{\mathfrak{m}}(A)$ has degree at most d-2 and so (recall sections 4.1 and 4.2), the Samuel function of A has degree at most d-1. But by the fundamental theorem, the degree of the Samuel function must equal the dimension of A which is d. This gives a contradiction.

For $2 \Rightarrow 1$, if $\operatorname{gr}_{\mathfrak{m}}(A)$ is isomorphic to $k[x_1, \ldots, x_d]$ as graded rings, then $\mathfrak{m}/\mathfrak{m}^2$ is generated as a k-vector space by d elements. Hence

$$d = \dim A \le \operatorname{emb} \dim A \le d$$

and so we must equality.

Theorem 5.11 gives an alternative proof of Theorem 5.10: If A, \mathfrak{m}, k is regular local, then by 5.7, the associated graded $\operatorname{gr}_{\mathfrak{m}}(A)$ is a polynomial ring and hence an integral domain. Let $a, b \in A$ be nonzero. Then by Krull's intersection theorem (Theorem 3.5), since a and b are nonzero, we can find integers $n, m \geq 1$ such that $a \in \mathfrak{m}^{n-1} - \mathfrak{m}^n$ and $b \in \mathfrak{m}^{m-1} - \mathfrak{m}^m$. Then the elements $\overline{a} \in \mathfrak{m}^{n-1}/\mathfrak{m}^n$ and $\overline{b} \in \mathfrak{m}^{m-1}/\mathfrak{m}^m$ are nonzero in $\operatorname{gr}_{\mathfrak{m}}(A)$. Hence $\overline{ab} \in \mathfrak{m}^{n+m-2}/\mathfrak{m}^{n+m-1}$ is nonzero. Hence $ab \notin \mathfrak{m}^{n+m-1}$ and thus ab cannot be zero in A.